Monday, February 27, 2017

Exponentiell Gleitende Durchschnitts Halbwertszeit

Exponential Moving Average - EMA BREAKING DOWN Exponential Moving Average - EMA Die 12- und 26-Tage-EMAs sind die beliebtesten Kurzzeitmittelwerte und werden verwendet, um Indikatoren wie die gleitende durchschnittliche Konvergenzdivergenz (MACD) und den prozentualen Preisoszillator zu erzeugen (PPO). Im Allgemeinen werden die 50- und 200-Tage-EMAs als Signale von langfristigen Trends verwendet. Trader, die technische Analyse verwenden finden fließende Mittelwerte sehr nützlich und aufschlussreich, wenn sie richtig angewendet werden, aber Chaos verursachen, wenn sie falsch verwendet werden oder falsch interpretiert werden. Alle gleitenden Durchschnitte, die gewöhnlich in der technischen Analyse verwendet werden, sind von Natur aus nacheilende Indikatoren. Folglich sollten die Schlussfolgerungen aus der Anwendung eines gleitenden Durchschnitts auf ein bestimmtes Marktdiagramm eine Marktbewegung bestätigen oder ihre Stärke belegen. Sehr oft, bis eine gleitende durchschnittliche Indikatorlinie eine Änderung vorgenommen hat, um eine bedeutende Bewegung auf dem Markt zu reflektieren, ist der optimale Punkt des Markteintritts bereits vergangen. Eine EMA dient dazu, dieses Dilemma zu einem gewissen Grad zu lindern. Da die EMA-Berechnung mehr Gewicht auf die neuesten Daten setzt, umgibt sie die Preisaktion etwas fester und reagiert damit schneller. Dies ist wünschenswert, wenn ein EMA verwendet wird, um ein Handelseintragungssignal abzuleiten. Interpretation der EMA Wie alle gleitenden Durchschnittsindikatoren sind sie für Trendmärkte viel besser geeignet. Wenn der Markt in einem starken und anhaltenden Aufwärtstrend ist. Zeigt die EMA-Indikatorlinie auch einen Aufwärtstrend und umgekehrt einen Abwärtstrend. Ein wachsamer Händler achtet nicht nur auf die Richtung der EMA-Linie, sondern auch auf das Verhältnis der Änderungsgeschwindigkeit von einem Balken zum nächsten. Wenn zum Beispiel die Preisaktion eines starken Aufwärtstrends beginnt, sich zu verflachen und umzukehren, wird die EMA-Rate der Änderung von einem Balken zum nächsten abnehmen, bis zu dem Zeitpunkt, zu dem die Indikatorlinie flacht und die Änderungsrate null ist. Wegen der nacheilenden Wirkung, von diesem Punkt, oder sogar ein paar Takte zuvor, sollte die Preisaktion bereits umgekehrt haben. Daraus folgt, dass die Beobachtung eines konsequenten Abschwächens der Veränderungsrate der EMA selbst als Indikator genutzt werden könnte, der das Dilemma, das durch den nacheilenden Effekt von gleitenden Durchschnittswerten verursacht wird, weiter verstärken könnte. Gemeinsame Verwendung der EMA-EMAs werden häufig in Verbindung mit anderen Indikatoren verwendet, um signifikante Marktbewegungen zu bestätigen und deren Gültigkeit zu messen. Für Händler, die intraday und schnelllebigen Märkten handeln, ist die EMA mehr anwendbar. Häufig benutzen Händler EMAs, um eine Handel Bias zu bestimmen. Zum Beispiel, wenn eine EMA auf einem Tages-Chart zeigt einen starken Aufwärtstrend, eine Intraday-Trader-Strategie kann nur von der langen Seite auf einem Intraday-Chart handeln. Moving Durchschnitt In Statistiken. Ein gleitender Durchschnitt. Auch Rolling Average genannt. Bewegter Mittelwert. Walzmittel. Gleitenden zeitlichen Mittelwert. Oder laufender Durchschnitt. Ist ein Typ eines Finite-Impulse-Response-Filters, der verwendet wird, um einen Satz von Datenpunkten zu analysieren, indem eine Reihe von Mittelwerten von verschiedenen Teilmengen des vollständigen Datensatzes erzeugt wird. Bei einer Reihe von Zahlen und einer festen Teilmengengröße wird das erste Element des gleitenden Mittelwertes erhalten, indem der Durchschnitt der anfänglichen festen Teilmenge der Zahlenreihe genommen wird. Dann wird die Teilmenge durch Vorwärtsschieben modifiziert, dh ohne die erste Zahl der Reihe und schließt die nächste Zahl ein, die der ursprünglichen Teilmenge in der Reihe folgt. Dies erzeugt eine neue Teilmenge von Zahlen, die gemittelt wird. Dieser Vorgang wird über die gesamte Datenreihe wiederholt. Die graphische Linie, die alle (festen) Mittel verbindet, ist der gleitende Durchschnitt. Ein gleitender Durchschnitt ist ein Satz von Zahlen, von denen jeder der Mittelwert der entsprechenden Teilmenge eines größeren Satzes von Bezugspunkten ist. Ein gleitender Durchschnitt kann auch ungleiche Gewichte für jeden Datumswert in der Teilmenge verwenden, um bestimmte Werte in der Teilmenge hervorzuheben. Ein gleitender Durchschnitt wird häufig mit Zeitreihendaten verwendet, um kurzfristige Fluktuationen auszugleichen und längerfristige Trends oder Zyklen hervorzuheben. Die Schwelle zwischen Kurzzeit und Langzeit hängt von der Anwendung ab, und die Parameter des gleitenden Durchschnitts werden entsprechend eingestellt. Zum Beispiel wird es oft in der technischen Analyse von Finanzdaten, wie Aktienkurse verwendet. Renditen oder Handelsvolumina. Es wird auch in der Volkswirtschaft verwendet, um das Bruttoinlandsprodukt, die Beschäftigung oder andere makroökonomische Zeitreihen zu untersuchen. Mathematisch ist ein gleitender Durchschnitt eine Art von Faltung und kann daher als ein Beispiel eines bei der Signalverarbeitung verwendeten Tiefpassfilters betrachtet werden. Bei Verwendung mit Nicht-Zeitreihendaten filtert ein gleitender Durchschnitt höherfrequente Komponenten ohne irgendeine spezifische Verbindung zur Zeit, obwohl typischerweise eine Art von Anordnung impliziert wird. Vereinfacht betrachtet, kann es als eine Glättung der Daten betrachtet werden. Einfacher gleitender Durchschnitt Edit In Finanzanwendungen ist ein einfacher gleitender Durchschnitt (SMA) der ungewichtete Mittelwert der vorangegangenen n Datenpunkte. Allerdings wird in der Wissenschaft und Technik der Mittelwert normalerweise aus einer gleichen Anzahl von Daten auf beiden Seiten eines zentralen Wertes genommen. Dies stellt sicher, dass Variationen in dem Mittel mit den Variationen in den Daten ausgerichtet sind, anstatt zeitlich verschoben zu werden. Ein Beispiel für einen einfachen, gleich gewichteten laufenden Mittelwert für eine n-Tage-Stichprobe des Schlusskurses ist der Mittelwert der vorangegangenen n-Tage-Schlusskurse. Wenn diese Preise dann die Formel ist, wird bei der Berechnung aufeinanderfolgender Werte ein neuer Wert in die Summe und ein alter Wert fällt aus, dh eine vollständige Summation jedes Mal ist für diesen einfachen Fall unnötig, Der ausgewählte Zeitraum hängt von der Art der Bewegung von Wie kurz, mittelfristig oder langfristig. Finanziell kann das gleitende Durchschnittsniveau als Unterstützung in einem steigenden Markt oder Widerstand in einem fallenden Markt interpretiert werden. Wenn die verwendeten Daten nicht um den Mittelpunkt zentriert sind, liegt ein einfacher gleitender Durchschnitt hinter dem letzten Datumspunkt um die Hälfte der Probenbreite zurück. Ein Merkmal des SMA ist, dass, wenn die Daten eine periodische Fluktuation haben, dann das Anwenden eines SMA dieser Periode diese Variation beseitigen wird (der Durchschnitt, der immer enthält.) Ein SMA kann auch überproportional beeinflusst werden, wenn alte Datenpunkte wegfallen oder neue Daten hereinkommen Ein vollständiger Zyklus). Aber ein vollkommen regelmäßiger Zyklus kommt selten vor. 1 Für eine Reihe von Anwendungen ist es vorteilhaft, die Verschiebung zu vermeiden, die durch die Verwendung nur vergangener Daten induziert wird. Daher kann ein zentraler gleitender Durchschnitt berechnet werden, wobei Daten verwendet werden, die beiderseits des Punktes in der Reihe gleich beabstandet sind, wo der Mittelwert berechnet wird. Dies erfordert die Verwendung einer ungeraden Anzahl von Bezugspunkten im Probenfenster. Kumulierter gleitender Durchschnitt Bearbeiten In einem kumulativen gleitenden Durchschnitt. Kommen die Daten in einem geordneten Datenstrom an und der Statistiker möchte den Durchschnitt aller Daten bis zum aktuellen Bezugspunkt erhalten. Zum Beispiel kann ein Anleger den durchschnittlichen Preis aller Aktien-Transaktionen für eine bestimmte Aktie bis zur aktuellen Zeit wollen. Bei jeder neuen Transaktion kann der Durchschnittspreis zum Zeitpunkt der Transaktion für alle Transaktionen bis zu diesem Zeitpunkt unter Verwendung des kumulativen Durchschnitts, typischerweise eines gleich gewichteten Durchschnitts der Sequenz von i Werten x 1, berechnet werden. X i bis zur aktuellen Zeit: Die brute-force Methode, um dies zu berechnen, wäre, alle Daten zu speichern und die Summe zu berechnen und durch die Anzahl der Datumspunkte zu dividieren, sobald ein neuer Datumspunkt angekommen ist. Es ist jedoch möglich, einfach den kumulativen Mittelwert zu aktualisieren, wenn ein neuer Wert xi & sub1; verfügbar wird, unter Verwendung der Formel: Somit ist der aktuelle kumulative Durchschnitt für einen neuen Bezugspunkt gleich dem vorherigen kumulativen Durchschnitt plus der Differenz zwischen dem letzten Datumspunkt und dem Wert Vorherigen Durchschnitt geteilt durch die Anzahl der bisher erhaltenen Punkte. Wenn alle Nullpunkte ankommen (i N), wird der kumulative Mittelwert dem Enddurchschnitt entsprechen. Die Ableitung der kumulativen Durchschnittsformel ist unkompliziert. Mit Hilfe dieser Gleichung für CA i 1 ergibt sich: Gewichteter gleitender Durchschnitt Bearbeiten Ein gewichteter Durchschnitt ist ein beliebiger Durchschnitt, der Multiplikationsfaktoren hat, um unterschiedliche Gewichte für Daten an verschiedenen Positionen im Probenfenster zu erhalten. Mathematisch ist der gleitende Durchschnitt die Faltung der Nullpunkte mit einer festen Gewichtungsfunktion. Eine Anwendung entfernt die Pixelisierung aus einem digitalen grafischen Bild. In der technischen Analyse der Finanzdaten hat ein gewichteter gleitender Durchschnitt (WMA) die spezifische Bedeutung von Gewichten, die in der arithmetischen Progression abnehmen. 2 In einem n-day WMA hat der letzte Tag das Gewicht n. Die zweitletzte n 16087221601, etc. bis zu einem. Datei: Gewichtete gleitende Durchschnittsgewichte N15.png Wenn die WMA über aufeinanderfolgende Werte berechnet wird, ist die Differenz zwischen den Zählern von WMA M 1 und WMA M np M 1 1608722160 p M 16087221601608722160 p M 8722n1. Bezeichnet man die Summe p M 160160160160 p M 8722 n 1 mit der Summe M. Dann zeigt die Grafik rechts, wie die Gewichte vom höchsten Gewicht für die letzten Datumspunkte auf Null abnehmen. Sie kann mit den im folgenden exponentiellen gleitenden Durchschnitt verglichen werden. Exponentieller gleitender Durchschnitt Bearbeiten Ein exponentieller gleitender Durchschnitt (EMA), der auch als exponentiell gewichteter gleitender Durchschnitt (EWMA) bezeichnet wird, ist ein Typ eines unendlichen Impulsantwortfilters, der exponentiell abnehmende Gewichtungsfaktoren anwendet. Die Gewichtung für jeden älteren Nullpunkt nimmt exponentiell ab und erreicht niemals Null. Die Grafik rechts zeigt ein Beispiel für die Gewichtsabnahme. Die EMA für eine Reihe Y kann rekursiv berechnet werden: Der Koeffizient repräsentiert den Grad der Gewichtungsabnahme, einen konstanten Glättungsfaktor zwischen 0 und 1. Je höher die Anzahl der älteren Beobachtungen, desto schneller. Alternativ kann in Form von N Zeitperioden ausgedrückt werden, wobei 1601602 (N & sub1;) Scriptfehler Scriptfehler 91 Zitat 93 benötigt. Wenn zum Beispiel N 16016019 zu 1601600.1 äquivalent ist, kann die Halbwertszeit der Gewichte (das Intervall, Die Gewichte um einen Faktor von zwei abnehmen) ungefähr N 2.8854 (innerhalb von 1, wenn N 160gt1605). Yt ist der Wert zu einer Zeitperiode t. S t ist der Wert der EMA zu einem beliebigen Zeitpunkt t. S 1 ist undefiniert. S 1 kann auf verschiedene Weise initialisiert werden, am häufigsten durch S 1 bis Y 1. Obwohl andere Techniken existieren, wie etwa das Setzen von S 1 auf einen Durchschnitt der ersten 4 oder 5 Beobachtungen. Die Prominenz der S 1 - Initialisierungswirkung auf den resultierenden gleitenden Durchschnitt hängt von kleineren Werten ab, was die Wahl von S 1 relativ wichtiger macht als größere Werte, da eine höhere Diskontierung älterer Beobachtungen schneller erfolgt. Diese Formulierung ist nach Hunter (1986). 4 Durch wiederholte Anwendung dieser Formel für verschiedene Zeiten können wir schließlich S t als gewichtete Summe der Nullpunkte Y t schreiben. Als: Ein alternativer Ansatz von Roberts (1959) verwendet Y t anstelle von Y t 87221. 5 Diese Formel kann auch in den technischen Analysenausdrücken wie folgt ausgedrückt werden und zeigt, wie die EMA auf den letzten Datumspunkt zu, aber nur um einen Anteil der Differenz (jedesmal) geht: Dies ist eine unendliche Summe mit abnehmenden Terme. Die N Perioden in einer N-Day EMA geben nur den Faktor an. N ist kein Stopppunkt für die Berechnung in der Art, wie sie in einem SMA oder WMA ist. Für ausreichend große N. Die ersten N Datenpunkte in einer EMA repräsentieren etwa 86 des Gesamtgewichts bei der Berechnung: 6 Die Leistungsformel oben gibt einen Startwert für einen bestimmten Tag an, wonach die zuerst gezeigte aufeinanderfolgende Tageformel angewendet werden kann. Die Frage, wie weit zurück für einen Anfangswert gehen muss, hängt im schlimmsten Fall von den Daten ab. Große Preiswerte in alten Daten werden sich auf die Gesamtmenge auswirken, selbst wenn ihre Gewichtung sehr gering ist. Wenn die Preise kleine Variationen haben, dann kann nur die Gewichtung berücksichtigt werden. Das Gewicht, das durch Stoppen nach k Termonen weggelassen wird, liegt außerhalb des Gesamtgewichts. Um beispielsweise 99,9 des Gewichts zu haben, setzen Sie das obige Verhältnis auf 0,1 und lösen Sie für k. Für dieses Beispiel (99,9 Gewicht). Geänderter gleitender Durchschnitt Bearbeiten Ein modifizierter gleitender Durchschnitt (MMA), ein laufender gleitender Durchschnitt (RMA) oder ein glatter gleitender Durchschnitt ist definiert als: Anwendung zur Messung der Computerleistung Bearbeiten Einige Computerleistungsmetriken, z. B. Die durchschnittliche Prozesswarteschlangenlänge oder die durchschnittliche CPU-Auslastung eine Form des exponentiellen gleitenden Durchschnitts verwenden. Hier wird als Funktion der Zeit zwischen zwei Messungen definiert. Ein Beispiel für einen Koeffizienten, der dem aktuellen Messwert ein größeres Gewicht verleiht, und ein geringeres Gewicht für die älteren Messungen ist beispielsweise ein 15-Minuten-Durchschnitt L einer Prozesswarteschlangenlänge Q. Gemessen alle 5 Sekunden (Zeitdifferenz beträgt 5 Sekunden), wird berechnet als Andere Gewichtungen Bearbeiten Andere Gewichtungssysteme werden gelegentlich verwendet 8211 zum Beispiel im Aktienhandel mit einem Volumengewicht wird jedes Zeitintervall proportional zum Handelsvolumen gewichtet. Eine weitere Gewichtung, die von Aktuaren verwendet wird, ist Spencers 15-Point Moving Average 11 (ein mittlerer gleitender Durchschnitt). Die symmetrischen Gewichtungskoeffizienten sind -3, -6, -5, 3, 21, 46, 67, 74, 67, 46, 21, 3, -5, -6, -3. Außerhalb der Finanzwelt haben gewichtete Laufwege viele Formen und Anwendungen. Jede Gewichtungsfunktion oder Kernel hat seine eigenen Eigenschaften. In der Technik und Wissenschaft ist die Frequenz - und Phasenreaktion des Filters oft wichtig, um die gewünschten und unerwünschten Verzerrungen zu verstehen, die ein bestimmter Filter auf die Daten anwenden wird. Ein Mittel nicht nur glätten die Daten. Ein Mittelwert ist eine Form des Tiefpaßfilters. Die Auswirkungen des jeweiligen Filters sollten verstanden werden, um eine geeignete Wahl zu treffen. An dieser Stelle diskutiert die französische Version dieses Artikels die spektrale Wirkung von 3 Arten von Mitteln (kumulativ, exponentiell, Gaussian). Moving Median Edit Aus statistischer Sicht ist der gleitende Durchschnitt, wenn er zur Schätzung der zugrunde liegenden Tendenz in einer Zeitreihe verwendet wird, anfällig für seltene Ereignisse wie schnelle Schocks oder andere Anomalien. Eine robustere Schätzung des Trends ist der einfache sich bewegende Median über n Zeitpunkte: wo der Median gefunden wird, indem man beispielsweise die Werte innerhalb der Klammern sortiert und den Wert in der Mitte findet. Für größere Werte von n. Kann der Median effizient berechnet werden, indem eine indexierbare Skiplist aktualisiert wird. 12 Statistisch gesehen ist der gleitende Durchschnitt optimal, um den zugrunde liegenden Trend der Zeitreihe wiederherzustellen, wenn die Schwankungen um den Trend normal verteilt sind. Die Normalverteilung weist jedoch keine sehr hohe Wahrscheinlichkeit auf sehr große Abweichungen von der Tendenz hin, was erklärt, warum diese Abweichungen einen unverhältnismäßig großen Einfluss auf die Trendschätzung haben werden. Es kann gezeigt werden, dass, wenn die Fluktuationen stattdessen angenommen werden, dass Laplace verteilt ist. Dann ist der bewegliche Median statistisch optimal. 13 Für eine gegebene Varianz stellt die Laplace-Verteilung eine höhere Wahrscheinlichkeit bei seltenen Ereignissen als die normale dar, was erklärt, warum der bewegte Median Stöße besser toleriert als der bewegte Mittelwert. Wenn der einfache sich bewegende Median oben zentriert ist, ist die Glättung identisch mit dem Medianfilter, der Anwendungen zum Beispiel in der Bildsignalverarbeitung aufweist. Siehe auch Bearbeiten Dieser Artikel enthält eine Referenzliste. Aber seine Quellen bleiben unklar, weil es unzureichende Inlinezitationen hat. Bitte helfen Sie, diesen Artikel durch präzisere Zitate zu verbessern. 32 (Februar 2010) Exploration des exponentiell gewichteten gleitenden Durchschnitts Volatilität ist die häufigste Maßnahme des Risikos, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, finden Sie unter Verwenden von Volatilität, um zukünftiges Risiko zu messen.) Wir verwendeten Googles tatsächlichen Aktienkursdaten, um die tägliche Volatilität basierend auf 30 Tagen der Bestandsdaten zu berechnen. In diesem Artikel werden wir auf einfache Volatilität zu verbessern und diskutieren den exponentiell gewichteten gleitenden Durchschnitt (EWMA). Historische Vs. Implied Volatility Erstens, lassen Sie diese Metrik in ein bisschen Perspektive. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit ist Prolog Wir messen Geschichte in der Hoffnung, dass es prädiktive ist. Die implizite Volatilität dagegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Erkenntnisse siehe Die Verwendungen und Grenzen der Volatilität.) Wenn wir uns auf die drei historischen Ansätze (auf der linken Seite) konzentrieren, haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Berechnen die periodische Rendite. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rendite in kontinuierlich zusammengesetzten Ausdrücken ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. H. Preis heute geteilt durch den Preis gestern und so weiter). Dies erzeugt eine Reihe von täglichen Renditen, von u i bis u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. Wir haben gezeigt, dass die einfache Varianz im Rahmen einiger akzeptabler Vereinfachungen der Mittelwert der quadratischen Renditen ist: Beachten Sie, dass diese Summe die periodischen Renditen zusammenfasst und dann diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, seine wirklich nur ein Durchschnitt der quadrierten periodischen kehrt zurück. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Also, wenn alpha (a) ein Gewichtungsfaktor (speziell eine 1m) ist, dann eine einfache Varianz sieht etwa so aus: Die EWMA verbessert auf einfache Varianz Die Schwäche dieser Ansatz ist, dass alle Renditen das gleiche Gewicht zu verdienen. Yesterdays (sehr jüngste) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch Verwendung des exponentiell gewichteten gleitenden Mittelwerts (EWMA), bei dem neuere Renditen ein größeres Gewicht auf die Varianz aufweisen, festgelegt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Die als Glättungsparameter bezeichnet wird. Lambda muss kleiner als 1 sein. Unter dieser Bedingung wird anstelle der gleichen Gewichtungen jede quadratische Rendite durch einen Multiplikator wie folgt gewichtet: Beispielsweise neigt die RiskMetrics TM, eine Finanzrisikomanagementgesellschaft, dazu, eine Lambda von 0,94 oder 94 zu verwenden. In diesem Fall wird die erste ( (1 - 0,94) (94) 0 6. Die nächste quadrierte Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von exponentiell in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muß) des vorherigen Gewichtes. Dies stellt eine Varianz sicher, die gewichtet oder zu neueren Daten voreingenommen ist. (Weitere Informationen finden Sie im Excel-Arbeitsblatt für die Googles-Volatilität.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google wird unten angezeigt. Einfache Volatilität wiegt effektiv jede periodische Rendite von 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre täglich Aktienkursdaten, das sind 509 tägliche Renditen und 1509 0,196). Aber beachten Sie, dass die Spalte P ein Gewicht von 6, dann 5,64, dann 5,3 und so weiter. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die Summe der ganzen Reihe (in Spalte Q) haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und der EWMA im Googles-Fall? Bedeutend: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (Details siehe Tabelle). Offenbar ließ sich die Googles-Volatilität in jüngster Zeit verringern, so dass eine einfache Varianz künstlich hoch sein könnte. Die heutige Varianz ist eine Funktion der Pior Tage Variance Youll bemerken wir benötigt, um eine lange Reihe von exponentiell sinkenden Gewichte zu berechnen. Wir werden die Mathematik hier nicht durchführen, aber eine der besten Eigenschaften der EWMA ist, daß die gesamte Reihe zweckmäßigerweise auf eine rekursive Formel reduziert: Rekursiv bedeutet, daß heutige Varianzreferenzen (d. h. eine Funktion der früheren Tagesvarianz) ist. Sie können diese Formel auch in der Kalkulationstabelle zu finden, und es erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der gestrigen Abweichung (gewichtet durch Lambda) plus der gestern zurückgelegten Rückkehr (gewogen von einem minus Lambda). Beachten Sie, wie wir sind nur das Hinzufügen von zwei Begriffe zusammen: gestern gewichtet Varianz und gestern gewichtet, quadriert zurück. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. wie RiskMetrics 94) deutet auf einen langsameren Abfall in der Reihe hin - in relativer Hinsicht werden wir mehr Datenpunkte in der Reihe haben, und sie fallen langsamer ab. Auf der anderen Seite, wenn wir das Lambda reduzieren, deuten wir auf einen höheren Abfall hin: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, so dass Sie mit seiner Empfindlichkeit experimentieren können). Zusammenfassung Volatilität ist die momentane Standardabweichung einer Aktie und die häufigste Risikomessung. Es ist auch die Quadratwurzel der Varianz. Wir können Varianz historisch oder implizit messen (implizite Volatilität). Bei der historischen Messung ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Varianz ist alle Renditen bekommen das gleiche Gewicht. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch weit entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch Zuordnen von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße, sondern auch mehr Gewicht auf neuere Renditen. (Um eine Film-Tutorial zu diesem Thema zu sehen, besuchen Sie die Bionic Turtle.) Die Sharpe Ratio ist ein Maß für die Berechnung risikoadjustierte Rendite, und dieses Verhältnis hat sich der Industrie-Standard für solche. Working Capital ist ein Maß für die Effizienz eines Unternehmens und seine kurzfristige finanzielle Gesundheit. Das Working Capital wird berechnet. Die Environmental Protection Agency (EPA) wurde im Dezember 1970 unter US-Präsident Richard Nixon gegründet. Das. Eine Verordnung, die am 1. Januar 1994 durchgeführt wurde, verringerte und schließlich beseitigte Tarife, um Wirtschaftstätigkeit zu fördern. Ein Maßstab, an dem die Wertentwicklung eines Wertpapier-, Investmentfonds - oder Anlageverwalters gemessen werden kann. Mobile Brieftasche ist eine virtuelle Brieftasche, die Zahlungskarteninformationen auf einem mobilen Gerät speichert.


No comments:

Post a Comment